研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

纳米级表没食子儿茶素-3-没食子酸酯:癌症治疗的新策略。

Epigallocatechin-3-gallate at the nanoscale: a new strategy for cancer treatment.

发表日期:2024 Dec
作者: Wenxue Sun, Yizhuang Yang, Cuiyun Wang, Mengmeng Liu, Jianhua Wang, Sen Qiao, Pei Jiang, Changgang Sun, Shulong Jiang
来源: PHARMACEUTICAL BIOLOGY

摘要:

表没食子儿茶素-3-没食子酸酯 (EGCG) 是绿茶中的主要儿茶素,通过调节多种信号通路的能力,显示出对抗各种类型癌细胞的潜力。然而,其低生物利用度和快速降解阻碍了其临床应用。这篇综述探讨了纳米胶囊在增强 EGCG 在癌症治疗中的稳定性、生物利用度和治疗效果方面的潜力。我们检索了 2019 年至今的 PubMed 数据库,使用“表没食子儿茶素” “没食子酸酯”、“EGCG”和“纳米粒子”作为搜索词来识别相关文献。本综述探讨了将 EGCG 封装在各种纳米载体中的最新纳米工程技术进步。重点是评估所用纳米颗粒的类型、其合成方法以及用于优化药物输送、诊断能力和治疗结果的技术。纳米颗粒可改善 EGCG 的理化稳定性和药代动力学,从而增强癌症治疗的治疗效果。纳米封装可实现靶向药物输送、控释、增强细胞摄取并减少 EGCG 的过早降解。重点介绍的研究包括那些在各种模型中负载 EGCG 的纳米颗粒显着抑制肿瘤生长的研究,证明通过主动靶向机制增强了渗透性和功效。EGCG 的纳米封装代表了肿瘤学中一种有前途的方法,与未封装的形式相比,具有多种治疗益处。尽管迄今为止的结果很有希望,但还需要进一步的研究来充分优化这些纳米系统的设计,以确保其安全性、有效性和临床可行性。
Epigallocatechin-3-gallate (EGCG), the predominant catechin in green tea, has shown the potential to combat various types of cancer cells through its ability to modulate multiple signaling pathways. However, its low bioavailability and rapid degradation hinder its clinical application.This review explores the potential of nanoencapsulation to enhance the stability, bioavailability, and therapeutic efficacy of EGCG in cancer treatment.We searched the PubMed database from 2019 to the present, using 'epigallocatechin gallate', 'EGCG', and 'nanoparticles' as search terms to identify pertinent literature. This review examines recent nano-engineering technology advancements that encapsulate EGCG within various nanocarriers. The focus was on evaluating the types of nanoparticles used, their synthesis methods, and the technologies applied to optimize drug delivery, diagnostic capabilities, and therapeutic outcomes.Nanoparticles improve the physicochemical stability and pharmacokinetics of EGCG, leading to enhanced therapeutic outcomes in cancer treatment. Nanoencapsulation allows for targeted drug delivery, controlled release, enhanced cellular uptake, and reduced premature degradation of EGCG. The studies highlighted include those where EGCG-loaded nanoparticles significantly inhibited tumor growth in various models, demonstrating enhanced penetration and efficacy through active targeting mechanisms.Nanoencapsulation of EGCG represents a promising approach in oncology, offering multiple therapeutic benefits over its unencapsulated form. Although the results so far are promising, further research is necessary to fully optimize the design of these nanosystems to ensure their safety, efficacy, and clinical viability.