评估癌细胞多药耐药性的体外模型:生化和形态学技术以及药理学策略。
In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies.
发表日期:2024 Oct 03
作者:
Maria Fernanda Madrid, Eleicy Nathaly Mendoza, Ana Lizeth Padilla, Celia Choquenaira-Quispe, Celina de Jesus Guimarães, João Victor de Melo Pereira, Francisco Washington Araújo Barros-Nepomuceno, Ingredy Lopes Dos Santos, Claudia Pessoa, Manoel Odorico de Moraes Filho, Danilo Damasceno Rocha, Paulo Michel Pinheiro Ferreira
来源:
J Toxicol Env Heal B
摘要:
ATP 结合盒 (ABC) 转运蛋白的过度表达会导致化疗失败,并象征着肿瘤学的巨大挑战,这与肿瘤细胞对抗癌药物的适应导致这些转运蛋白变得不那么有效有关,这种机制称为多药耐药性。多药耐药)。本综述的目的是提出最广泛使用的诱导和理解用于检测多重耐药(MDR)调节剂或抑制剂的体外模型的方法,包括用于化学敏感性研究的生化和形态学技术。 MDR蛋白的过度表达,主要是糖蛋白亚家族1(P-gp或ABCB1)多药耐药、多药耐药相关蛋白1(MRP1或ABCCC1)、多药耐药相关蛋白2(MRP2或ABCC2)和癌症耐药蛋白(ABCG2),在化疗暴露的癌症系中,已通过多种技术建立/研究。在这些技术中,最常用的是 (i) 比色/荧光间接生物测定,(ii) 罗丹明和流出分析,(iii) 通过荧光显微镜和流式细胞术释放 3,30-二乙基氧羰花青碘以测量 P-gp 功能和其他技术ABC 转运蛋白,(iv) 钙黄绿素-乙酰氧基甲基酯的排除,(v) ATP 酶测定以区分与 ABC 转运蛋白相互作用的类型,(vi) 形态学以详细说明转化细胞中的表型特征,(vii) 抗性相关蛋白 (RT) 的分子测试-qPCR)和(viii)2D 和 3D 模型,(ix)类器官,以及(x)微流体技术。然后,利用体外模型检测化疗 MDR 细胞,以评估调节或抑制肿瘤细胞生长并克服临床耐药性的创新疗法。值得注意的是,包括抗 miRNA、抗体药物缀合物(天然产物)和表观遗传修饰在内的不同疗法也被认为是有前途的替代方案,因为目前没有抗 MDR 疗法能够改善患者的生活质量。因此,迫切需要新的临床耐药标志物,以更可靠地反映新型抗肿瘤药物的体内有效性。
The overexpression of ATP-binding cassette (ABC) transporters contributes to the failure of chemotherapies and symbolizes a great challenge in oncology, associated with the adaptation of tumor cells to anticancer drugs such that these transporters become less effective, a mechanism known as multidrug resistance (MDR). The aim of this review is to present the most widely used methodologies for induction and comprehension of in vitro models for detection of multidrug-resistant (MDR) modulators or inhibitors, including biochemical and morphological techniques for chemosensitivity studies. The overexpression of MDR proteins, predominantly, the subfamily glycoprotein-1 (P-gp or ABCB1) multidrug resistance, multidrug resistance-associated protein 1 (MRP1 or ABCCC1), multidrug resistance-associated protein 2 (MRP2 or ABCC2) and cancer resistance protein (ABCG2), in chemotherapy-exposed cancer lines have been established/investigated by several techniques. Amongst these techniques, the most used are (i) colorimetric/fluorescent indirect bioassays, (ii) rhodamine and efflux analysis, (iii) release of 3,30-diethyloxacarbocyanine iodide by fluorescence microscopy and flow cytometry to measure P-gp function and other ABC transporters, (iv) exclusion of calcein-acetoxymethylester, (v) ATPase assays to distinguish types of interaction with ABC transporters, (vi) morphology to detail phenotypic characteristics in transformed cells, (vii) molecular testing of resistance-related proteins (RT-qPCR) and (viii) 2D and 3D models, (ix) organoids, and (x) microfluidic technology. Then, in vitro models for detecting chemotherapy MDR cells to assess innovative therapies to modulate or inhibit tumor cell growth and overcome clinical resistance. It is noteworthy that different therapies including anti-miRNAs, antibody-drug conjugates (to natural products), and epigenetic modifications were also considered as promising alternatives, since currently no anti-MDR therapies are able to improve patient quality of life. Therefore, there is also urgency for new clinical markers of resistance to more reliably reflect in vivo effectiveness of novel antitumor drugs.