用于增强癌症治疗诊断的具有改变价态(Mn2/Mn4 和 Mo5/Mo6)的过渡金属(钼)掺杂类药物构象纳米结构。
Transition Metal (Molybdenum)-Doped Drug-like Conformational Nanoarchitectonics with Altered Valence States (Mn2+/Mn4+ and Mo5+/Mo6+) for Augmented Cancer Theranostics.
发表日期:2024 Oct 08
作者:
Hong-Ying Xia, Ying Zhao, Ruo-Yin Meng, Ai-Zheng Chen, Shi-Bin Wang, Ranjith Kumar Kankala
来源:
MOLECULAR PHARMACEUTICS
摘要:
尽管癌症治疗取得了进步,但使用纳米颗粒输送活性药物成分 (API) 仍然具有挑战性,因为所需药物有效负载的输送失败、靶向能力差和生物分布差,阻碍了其临床转化。最近,具有内在治疗功能的材料的适当设计引起了人们对各种智能治疗纳米平台开发的巨大兴趣。在这项研究中,我们展示了过渡金属(钼,Mo)掺杂二氧化锰(MnO2)纳米结构的制造,具有诊断(磁共振成像,MRI)和治疗(化学动力学疗法,CDT)功能。简便的水热方法辅助的钼掺杂二氧化锰花状纳米结构提供了可定制的尺寸变化形态、精确的治疗效果、卓越的生物相容性和肿瘤微环境中的生物可降解性。由于掺杂钼物质而产生的缺陷表现出过氧化物酶和氧化酶活性,改善了谷胱甘肽(GSH)的氧化。两组变价金属离子对(Mn2/Mn4和Mo5/Mo6)及其相互作用可以显着改善类Fenton反应并产生有毒的羟基自由基(·OH),从而实现CDT辅助的抗肿瘤作用。作为固有的 T1-MRI 试剂,这些 MnO2 纳米粒子在体外表现出优异的 MRI 功效。总之,我们相信这些具有两对可变价态的构象钼掺杂 MnO2 纳米结构可以增强药剂学中的无药治疗。
Despite the advancements in cancer therapy, delivering active pharmaceutical ingredients (APIs) using nanoparticles remains challenging due to the failed conveyance of the required drug payload, poor targeting ability, and poor biodistribution, hampering their clinical translation. Recently, the appropriate design of materials with intrinsic therapeutic functionalities has garnered enormous interest in the development of various intelligent therapeutic nanoplatforms. In this study, we demonstrate the fabrication of transition metal (molybdenum, Mo)-doped manganese dioxide (MnO2) nanoarchitectures, exhibiting diagnostic (magnetic resonance imaging, MRI) and therapeutic (chemodynamic therapy, CDT) functionalities. The facile hydrothermal approach-assisted Mo-doped MnO2 flower-like nanostructures offered tailorable morphologies in altered dimensions, precise therapeutic effects, exceptional biocompatibility, and biodegradability in the tumor microenvironment. The resultant defects due to doped Mo species exhibited peroxidase and oxidase activities, improving glutathione (GSH) oxidation. The two sets of variable valence metal ion pairs (Mn2+/Mn4+ and Mo5+/Mo6+) and their interplay could substantially improve the Fenton-like reaction and generate toxic hydroxyl radicals (•OH), thus achieving CDT-assisted antitumor effects. As inherent T1-MRI agents, these MnO2 nanoparticles displayed excellent MRI efficacy in vitro. Together, we believe that these conformational Mo-doped MnO2 nanoarchitectures with two pairs of variable valence states could potentiate drugless therapy in pharmaceutics.