基于肿瘤内和肿瘤周围 PA/US 图像的机器学习放射组学可区分乳腺癌中的管腔肿瘤和非管腔肿瘤。
Machine learning radiomics based on intra and peri tumor PA/US images distinguish between luminal and non-luminal tumors in breast cancers.
发表日期:2024 Dec
作者:
Sijie Mo, Hui Luo, Mengyun Wang, Guoqiu Li, Yao Kong, Hongtian Tian, Huaiyu Wu, Shuzhen Tang, Yinhao Pan, Youping Wang, Jinfeng Xu, Zhibin Huang, Fajin Dong
来源:
Photoacoustics
摘要:
本研究旨在评估使用光声/超声 (PA/US) 成像在肿瘤内和肿瘤周围区域区分管腔和非管腔乳腺癌 (BC) 的放射组学模型,并确定用于准确分类的最佳肿瘤周围区域。 2022年至2024年4月,本研究连续收集深圳市人民医院的322例患者,使用标准化条件进行BC的PA/US成像。使用 ITK-SNAP 描绘感兴趣区域,使用 Pyradiomic 包中的代码自动扩展 2mm、4mm 和 6mm 的肿瘤周围区域。随后使用 Pyradiomics 进行特征提取。该研究采用 Z 分数归一化、Spearman 相关性进行特征相关性,以及 LASSO 回归进行特征选择,并通过 10 倍交叉验证进行验证。放射组学模型整合了肿瘤内和肿瘤周围区域,通过受试者工作特征曲线(ROC)、校准和决策曲线分析(DCA)进行评估。我们从肿瘤内和肿瘤周围PA/US图像区域2mm、4mm处提取和选择特征和 6 毫米。整合这些区域的综合放射组学模型表现出增强的诊断性能,尤其是4mm模型,其显示出最高的曲线下面积(AUC):0.898(0.78-1.00)以及相对较高的准确性(0.900)和灵敏度(0.937)。正如测试集结果所证明的那样,该模型在区分 Luminal 和非 Luminal BC 方面优于独立临床模型和组合临床放射组学模型。本研究开发了一种在 4mm 区域 PA/US 模型中集成肿瘤内和肿瘤周围的放射组学模型,增强 Luminal 与非 Luminal BC 的区别。它展示了肿瘤周围特征的诊断效用,减少了侵入性活检的需要并帮助化疗计划,同时强调了优化肿瘤周围尺寸以提高模型准确性的重要性。© 2024 作者。
This study aimed to evaluate a radiomics model using Photoacoustic/ultrasound (PA/US) imaging at intra and peri-tumoral area to differentiate Luminal and non-Luminal breast cancer (BC) and to determine the optimal peritumoral area for accurate classification.From February 2022 to April 2024, this study continuously collected 322 patients at Shenzhen People's Hospital, using standardized conditions for PA/US imaging of BC. Regions of interest were delineated using ITK-SNAP, with peritumoral regions of 2 mm, 4 mm, and 6 mm automatically expanded using code from the Pyradiomic package. Feature extraction was subsequently performed using Pyradiomics. The study employed Z-score normalization, Spearman correlation for feature correlation, and LASSO regression for feature selection, validated through 10-fold cross-validation. The radiomics model integrated intra and peri-tumoral area, evaluated by receiver operating characteristic curve(ROC), Calibration and Decision Curve Analysis(DCA).We extracted and selected features from intratumoral and peritumoral PA/US images regions at 2 mm, 4 mm, and 6 mm. The comprehensive radiomics model, integrating these regions, demonstrated enhanced diagnostic performance, especially the 4 mm model which showed the highest area under the curve(AUC):0.898(0.78-1.00) and comparably high accuracy (0.900) and sensitivity (0.937). This model outperformed the standalone clinical model and combined clinical-radiomics model in distinguishing between Luminal and non-Luminal BC, as evidenced in the test set results.This study developed a radiomics model integrating intratumoral and peritumoral at 4 mm region PA/US model, enhancing the differentiation of Luminal from non-Luminal BC. It demonstrated the diagnostic utility of peritumoral characteristics, reducing the need for invasive biopsies and aiding chemotherapy planning, while emphasizing the importance of optimizing tumor surrounding size for improved model accuracy.© 2024 The Authors.