研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

基于人工智能的猫小肠活检淋巴细胞定量。

Artificial intelligence-based quantification of lymphocytes in feline small intestinal biopsies.

发表日期:2024 Oct 14
作者: Judit M Wulcan, Paula R Giaretta, Sai Fingerhood, Simone de Brot, Esther E V Crouch, Tatiana Wolf, Maria Isabel Casanova, Pedro R Ruivo, Pompei Bolfa, Nicolás Streitenberger, Christof A Bertram, Taryn A Donovan, Michael Kevin Keel, Peter F Moore, Stefan M Keller
来源: VETERINARY PATHOLOGY

摘要:

猫慢性肠病是老年猫的一种定义不明确的疾病,包括慢性肠炎和低度肠道淋巴瘤。小肠活检中淋巴细胞数量和分布的组织学评估对于分类和分级至关重要。然而,淋巴细胞定量的传统组织学方法观察者间一致性较低,导致诊断可靠性较低。本研究旨在开发和验证人工智能 (AI) 模型,用于检测猫苏木精和伊红染色的小肠活检组织中的上皮内和固有层淋巴细胞。与 11 名兽医解剖病理学家的多数意见相比,AI 模型的中位敏感性、阳性预测值和 F1 评分分别为 100%(四分位距 [IQR] 67%-100%)、57%(IQR 38%-83) %)、上皮内淋巴细胞为 67% (IQR 43%-80%)、89% (IQR 71%-100%)、67% (IQR 50%-82%) 和 70% (IQR 43%-80) %)分别为固有层淋巴细胞。错误包括染色褪色的全玻片图像中的假阴性以及错误识别肠细胞核的假阳性。全玻片水平的半定量分级显示病理学家之间的观察者间一致性较低,强调需要可重复的定量方法。虽然半定量等级和 AI 衍生淋巴细胞计数呈正相关,但 AI 衍生淋巴细胞计数在不同等级之间重叠。我们的人工智能模型在病理学家的监督下,可以在整个幻灯片水平上对猫肠道淋巴细胞进行可重复、客观和定量的评估,并有可能提高猫慢性肠病的诊断准确性和一致性。
Feline chronic enteropathy is a poorly defined condition of older cats that encompasses chronic enteritis to low-grade intestinal lymphoma. The histological evaluation of lymphocyte numbers and distribution in small intestinal biopsies is crucial for classification and grading. However, conventional histological methods for lymphocyte quantification have low interobserver agreement, resulting in low diagnostic reliability. This study aimed to develop and validate an artificial intelligence (AI) model to detect intraepithelial and lamina propria lymphocytes in hematoxylin and eosin-stained small intestinal biopsies from cats. The median sensitivity, positive predictive value, and F1 score of the AI model compared with the majority opinion of 11 veterinary anatomic pathologists, were 100% (interquartile range [IQR] 67%-100%), 57% (IQR 38%-83%), and 67% (IQR 43%-80%) for intraepithelial lymphocytes, and 89% (IQR 71%-100%), 67% (IQR 50%-82%), and 70% (IQR 43%-80%) for lamina propria lymphocytes, respectively. Errors included false negatives in whole-slide images with faded stain and false positives in misidentifying enterocyte nuclei. Semiquantitative grading at the whole-slide level showed low interobserver agreement among pathologists, underscoring the need for a reproducible quantitative approach. While semiquantitative grade and AI-derived lymphocyte counts correlated positively, the AI-derived lymphocyte counts overlapped between different grades. Our AI model, when supervised by a pathologist, offers a reproducible, objective, and quantitative assessment of feline intestinal lymphocytes at the whole-slide level, and has the potential to enhance diagnostic accuracy and consistency for feline chronic enteropathy.