研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

患有非癌症慢性疼痛状况 (NCPC) 的老年癌症幸存者在癌症诊断前后使用处方阿片类药物:基于群体的轨迹模型 (GBTM) 的应用。

Prescription Opioid Use before and after Diagnosis of Cancer Among Older Cancer Survivors With Non-Cancer Chronic Pain Conditions (NCPCs): An Application of Group-Based Trajectory Modeling (GBTM).

发表日期:2024
作者: Rudi Safarudin, Traci LeMasters, Salman Khan, Usha Sambamoorthi
来源: PHYSICAL THERAPY & REHABILITATION JOURNAL

摘要:

处方阿片类药物对于控制患有慢性疼痛的成年人的疼痛至关重要。然而,随着时间的推移持续使用可能会导致负面的健康后果。识别长期持续使用阿片类药物的个体及其特征可以为临床决策提供信息,并有助于降低滥用和过量死亡的风险。本研究旨在研究老年癌症幸存者中处方阿片类药物随时间的使用轨迹以及与这些轨迹相关的因素患有任何非癌症疼痛状况 (NCPC)。我们对老年(癌症诊断年龄≥67 岁)癌症(乳腺癌、结直肠癌和前列腺癌或非霍奇金淋巴瘤)幸存者的纵向数据进行了一项回顾性队列研究设计与任何 NCPC 合作。数据源自 2007-2015 年关联的监测、流行病学和最终结果 (SEER)-医疗保险数据集 (N = 35,071)。基于组的轨迹模型 (GBTM) 用于根据癌前诊断 (t1-t4)、急性癌症治疗 (t5-t8) 和癌症期间每 90 天处方阿片类药物的使用来识别个体的同质亚组(不同的轨迹)癌症治疗后(t9-t12)期。使用多变量多项 Logistic 回归分析了生物因素、健康的社会决定因素 (SDoH)、身心健康、药物使用、医疗保健使用以及与轨迹成员资格相关的外部因素。确定了阿片类药物使用的四种不同轨迹:(1 )增加-减少使用(6.1%); (2)癌症诊断后短期使用(40.6%); (3)低使用率(41.0%); (4)持续使用(12.3%)。在完全调整的多项逻辑回归中,SDoH(例如非西班牙裔黑人)[调整后的比值比 (AOR) = 1.69; 95%CI = 1.48, 1.93)] 和农村居住 (AOR = 1.49; 95%CI = 1.15, 1.94)]、共病焦虑 (AOR = 1.33; 95%CI = 1.18, 1.51) 和药物使用 (NSAIDs - AOR = 1.20;95% CI = 1.10, 1.30)与持续使用组的成员资格相关。在碎片化护理指数较高的人(AOR = 0.95,95%CI = 0.93,0.97)和居住在医疗保险优势渗透率较高的县的人(AOR = 0.96;95%CI = 0.95,0.97)中,持续使用的可能性较小。八名老年人长期持续使用阿片类药物。该组的轮廓特征与其他轨迹组不同。减少慢性阿片类药物使用的政策和计划需要考虑个体内和个体间的变异性,以减少阿片类药物相关的发病率和死亡率。
Prescription opioids are essential in managing pain among adults with chronic pain conditions. However, persistent use over time can lead to negative health consequences. Identifying individuals with persistent use over time and their characteristics can inform clinical decision-making and aid in reducing the risk of abuse and overdose deaths.This study aims to examine trajectories of prescription opioid use over time and factors associated with these trajectories among older cancer survivors with any non-cancer pain conditions (NCPC).We conducted a retrospective cohort study design with longitudinal data of older (age at cancer diagnosis ≥67 years) cancer (incident breast, colorectal, and prostate cancers, or non-Hodgkin lymphoma) survivors with any NCPC. Data were derived from the 2007-2015 linked Surveillance, Epidemiology, and End Results (SEER)-Medicare dataset (N = 35,071). Group-Based Trajectory Modeling (GBTM) was used to identify homogeneous subgroups (distinct trajectories) of individuals based on every 90-day prescription opioid use during pre-cancer diagnosis (t1-t4), acute cancer treatment (t5-t8), and post-cancer treatment (t9-t12) periods. Biological factors, social determinants of health (SDoH), physical and mental health, medication use, health care use, and external factors associated with a trajectory membership were analyzed with multivariable multinomial logistic regressions.Four distinct trajectories of opioid use were identified: (1) increase-decrease use (6.1%); (2) short-term use after cancer diagnosis (40.6%); (3) low-use (41.0%); and (4) persistent use (12.3%). In the fully-adjusted multinomial logistic regression, the SDoH such as Non-Hispanic Black [adjusted odds ratios (AOR) = 1.69; 95%CI = 1.48, 1.93)] and rural residence (AOR = 1.49; 95%CI = 1.15, 1.94)], comorbid anxiety (AOR = 1.33; 95%CI = 1.18, 1.51), and medication use (NSAIDs - AOR = 1.20; 95%CI = 1.10, 1.30) were associated with membership in the persistent use group. Persistent use was less likely among those with higher fragmented care index (AOR = 0.95, 95%CI = 0.93, 0.97) and those living in counties with higher Medicare advantage penetration (AOR = 0.96; 95%CI = 0.95, 0.97).One in eight older adults had persistent opioid use over time. The profile characteristics of this group were different from the other trajectory groups. Policies and programs to reduce chronic opioid use need to consider the intra- and inter-individual variability to reduce opioid-related morbidity and mortality.