研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

ppHiC:ProteinPaint 门户网站上 Hi-C 结果的交互式探索。

ppHiC: Interactive exploration of Hi-C results on the ProteinPaint web portal.

发表日期:2024 Dec
作者: Akanksha Rajput, Colleen Reilly, Airen Zaldivar Peraza, Jian Wang, Edgar Sioson, Gavriel Matt, Robin Paul, Congyu Lu, Aleksandar Acic, Karishma Gangwani, Xin Zhou
来源: Computational and Structural Biotechnology Journal

摘要:

ProteinPaint Hi-C 工具 (ppHiC) 促进基于网络的可视化和 Hi-C 数据的协作探索,Hi-C 数据是理解三维基因组结构的重要资源。 ppHiC 允许研究人员在网络浏览器上轻松分析大型 Hi-C 数据集,而无需计算专业知识,而迄今为止,对这种复杂基因组数据的访问受到限制。该平台兼容多个 Hi-C 数据版本,并拥有高度可定制的界面,包括用于精确调整关键可视化参数的配置面板。该工具的交互功能提供了广泛的视图,从全基因组景观到基因座对之间的详细相互作用,这些视图都可以在单个集成环境中访问。在这里,我们演示了如何使用 ppHiC 可视化神经母细胞瘤中改变的染色质构象景观,有助于了解这种癌症中的基因组重排。© 2024 作者。
The ProteinPaint Hi-C tool (ppHiC) facilitates web-based visualization and collaborative exploration of Hi-C data, a vital resource for understanding three-dimensional genomic structures. ppHiC allows researchers to easily analyze large Hi-C datasets on a web browser without requiring the computational expertise that has heretofore limited access to this complex genomic data. The platform is compatible with multiple Hi-C data versions and boasts a highly customizable interface, including a configuration panel for the precise adjustment of key visualization parameters. The tool's interactive features offer a broad range of views, from whole-genome landscapes to detailed interactions between pairs of loci, that are accessible within a single, integrated environment. Here, we demonstrate how using ppHiC to visualize an altered chromatin conformational landscape in neuroblastoma can inform understanding of the genomic rearrangements in this cancer.© 2024 The Authors.