研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

用于肿瘤术中成像的患者来源的细胞外囊泡的临床前药理学。

Preclinical pharmacology of patient-derived extracellular vesicles for the intraoperative imaging of tumors.

发表日期:2024
作者: Alessandro Villa, Daniela Crescenti, Zemira De Mitri, Elisabetta Crippa, Silvia Rosa, Nicoletta Rizzi, Fereshteh Shojaei-Ghahrizjani, Monica Rebecchi, Simona Vincenti, Francesca Selmin, Electra Brunialti, Nicolò Simonotti, Marianna Maspero, Michele Dei Cas, Camilla Recordati, Saverio Paltrinieri, Alessia Giordano, Rita Paroni, Margherita Galassi, Vito Ladisa, Flavio Arienti, Francesco Cilurzo, Vincenzo Mazzaferro, Paolo Ciana
来源: CLINICAL PHARMACOLOGY & THERAPEUTICS

摘要:

与来自健康个体的细胞外囊泡(EV)不同,源自肿瘤患者血浆的细胞外囊泡(EV)表现出显着的肿瘤靶向特性。我们之前已经证明了将近红外(NIR)荧光染料吲哚菁绿(ICG)与患者来源的细胞外囊泡(PDEV)配制用于选择性递送至肿瘤组织的可行性。该染色方案有望在术中肿瘤边缘成像中得到临床应用,从而实现精确的肿瘤组织切除。为此,我们提出了 ONCOGREEN 方案,包括 PDEV 隔离、ICG 加载和回输给同一患者。方法:通过对小鼠的体内研究,我们概述了 PDEVs-ICG 用于术中肿瘤成像的关键药理学参数、PDEV 生物分布动力学以及潜在的治疗相关毒理学效应。此外,我们建立了基于血浆置换的方案来分离自体 PDEV,确保人类治疗所需的大规模剂量。还探索了一种潜在的基于冻干的保存方法,以促进 PDEV 的储存和运输。结果:该研究确定了术中清晰的肿瘤边缘成像所需的 PDEVs-ICG 的有效剂量。 PDEV 的生物分布动力学显示出对肿瘤组织的良好靶向性,且没有脱靶分布。毒理学评估显示没有与治疗相关的显着副作用。基于血浆置换的分离方案成功产生了足够数量的自体PDEV,并且冻干保存方法保持了PDEV的功能完整性,以供后续临床应用。结论:我们的研究为自体 PDEV 的直接临床应用奠定了基础,最初侧重于术中成像。利用自体 PDEV 有可能加速 EV 的整合,作为抗肿瘤药物向癌组织的靶向递送工具。这种方法有望提高肿瘤组织切除的精度,并改善肿瘤患者的整体手术结果。© 作者。
Extracellular vesicles (EVs) derived from the plasma of oncological patients exhibit significant tumor-targeting properties, unlike those from healthy individuals. We have previously shown the feasibility of formulating the near-infrared (NIR) fluorescent dye indocyanine green (ICG) with patient-derived extracellular vesicles (PDEVs) for selective delivery to neoplastic tissue. This staining protocol holds promise for clinical application in intraoperative tumor margin imaging, enabling precise neoplastic tissue resection. To this end, we propose the ONCOGREEN protocol, involving PDEV isolation, ICG loading, and reinfusion into the same patients. Methods: By in vivo studies on mice, we outlined key pharmacological parameters of PDEVs-ICG for intraoperative tumor imaging, PDEV biodistribution kinetics, and potential treatment-related toxicological effects. Additionally, we established a plasmapheresis-based protocol for isolating autologous PDEVs, ensuring the necessary large-scale dosage for human treatment. A potential lyophilization-based preservation method was also explored to facilitate the storage and transport of PDEVs. Results: The study identified the effective dose of PDEVs-ICG necessary for clear intraoperative tumor margin imaging. The biodistribution kinetics of PDEVs showed favorable targeting to neoplastic tissues, without off-target distribution. Toxicological assessments revealed no significant adverse effects associated with the treatment. The plasmapheresis-based isolation protocol successfully yielded a sufficient quantity of autologous PDEVs, and the lyophilization preservation method maintained the functional integrity of PDEVs for subsequent clinical application. Conclusions: Our research lays the groundwork for the direct clinical application of autologous PDEVs, initially focusing on intraoperative imaging. Utilizing autologous PDEVs has the potential to accelerate the integration of EVs as a targeted delivery tool for anti-neoplastic agents to cancerous tissue. This approach promises to enhance the precision of neoplastic tissue resection and improve overall surgical outcomes for oncological patients.© The author(s).