患者来源的细胞外囊泡在术中肿瘤成像中的前临床药理学研究
Preclinical pharmacology of patient-derived extracellular vesicles for the intraoperative imaging of tumors
DOI 原文链接
用sci-hub下载
如无法下载,请从 Sci-Hub 选择可用站点尝试。
影响因子:13.3
分区:医学1区 Top / 医学:研究与实验1区
发表日期:2024
作者:
Alessandro Villa, Daniela Crescenti, Zemira De Mitri, Elisabetta Crippa, Silvia Rosa, Nicoletta Rizzi, Fereshteh Shojaei-Ghahrizjani, Monica Rebecchi, Simona Vincenti, Francesca Selmin, Electra Brunialti, Nicolò Simonotti, Marianna Maspero, Michele Dei Cas, Camilla Recordati, Saverio Paltrinieri, Alessia Giordano, Rita Paroni, Margherita Galassi, Vito Ladisa, Flavio Arienti, Francesco Cilurzo, Vincenzo Mazzaferro, Paolo Ciana
DOI:
10.7150/thno.98671
摘要
来源于肿瘤患者血浆的细胞外囊泡(EVs)展现出显著的肿瘤靶向特性,这与来自健康个体的细胞外囊泡不同。我们此前已证明将近红外(NIR)荧光染料吲哚青绿(ICG)与患者来源的细胞外囊泡(PDEVs)配制以选择性输送至肿瘤组织的可行性。这一染色方案在临床应用中有望实现术中肿瘤边缘成像,从而实现精确的肿瘤组织切除。为此,我们提出了ONCOGREEN方案,包括PDEV的分离、ICG的负载及再次注入同一患者体内。方法:通过在小鼠体内的研究,我们概述了PDEVs-ICG用于术中肿瘤成像的关键药理参数、PDEV的分布动力学及潜在的治疗相关毒理作用。此外,我们建立了一套基于血浆置换的自体PDEVs分离方案,以确保人类治疗所需的大规模剂量。还探索了一种冻干保存方法,以便储存和运输PDEVs。结果:研究确定了实现术中清晰肿瘤边缘成像的PDEVs-ICG的有效剂量。PDEVs的分布动力学显示其对肿瘤组织具有良好的靶向性,且无非靶向分布。毒理学评估未发现明显的不良反应。血浆置换方案成功获得了足够数量的自体PDEVs,冻干保存法也能保持PDEVs的功能完整性以便后续临床应用。结论:我们的研究为自体PDEVs的临床直接应用奠定了基础,最初集中在术中成像。利用自体PDEVs有望加快EVs作为抗肿瘤药物靶向递送工具的整合,提升肿瘤组织的切除精准度,并改善肿瘤患者的整体手术效果。
Abstract
Extracellular vesicles (EVs) derived from the plasma of oncological patients exhibit significant tumor-targeting properties, unlike those from healthy individuals. We have previously shown the feasibility of formulating the near-infrared (NIR) fluorescent dye indocyanine green (ICG) with patient-derived extracellular vesicles (PDEVs) for selective delivery to neoplastic tissue. This staining protocol holds promise for clinical application in intraoperative tumor margin imaging, enabling precise neoplastic tissue resection. To this end, we propose the ONCOGREEN protocol, involving PDEV isolation, ICG loading, and reinfusion into the same patients. Methods: By in vivo studies on mice, we outlined key pharmacological parameters of PDEVs-ICG for intraoperative tumor imaging, PDEV biodistribution kinetics, and potential treatment-related toxicological effects. Additionally, we established a plasmapheresis-based protocol for isolating autologous PDEVs, ensuring the necessary large-scale dosage for human treatment. A potential lyophilization-based preservation method was also explored to facilitate the storage and transport of PDEVs. Results: The study identified the effective dose of PDEVs-ICG necessary for clear intraoperative tumor margin imaging. The biodistribution kinetics of PDEVs showed favorable targeting to neoplastic tissues, without off-target distribution. Toxicological assessments revealed no significant adverse effects associated with the treatment. The plasmapheresis-based isolation protocol successfully yielded a sufficient quantity of autologous PDEVs, and the lyophilization preservation method maintained the functional integrity of PDEVs for subsequent clinical application. Conclusions: Our research lays the groundwork for the direct clinical application of autologous PDEVs, initially focusing on intraoperative imaging. Utilizing autologous PDEVs has the potential to accelerate the integration of EVs as a targeted delivery tool for anti-neoplastic agents to cancerous tissue. This approach promises to enhance the precision of neoplastic tissue resection and improve overall surgical outcomes for oncological patients.